Bloomberg featured a thought-provoking dataviz that illustrates the pay gap by gender in the U.K. The dataset underlying this effort is complex, and the designers did a good job simplifying the data for ease of comprehension.

U.K. companies are required to submit data on salaries and bonuses by gender, and by pay quartiles. The dataset is incomplete, since some companies are slow to report, and the analyst decided not to merge companies that changed names.

Companies are classified into industry groups. Readers who read Chapter 3 of Numbers Rule Your World (link) should ask whether these group differences are meaningful by themselves, without controlling for seniority, job titles, etc. The chapter features one method used by the educational testing industry to take a more nuanced analysis of group differences.

***

The Bloomberg visualization has two sections. In the top section, each company is represented by the percent difference between average female pay and average male pay. Then the companies within a given industry is shown in a histogram. The histograms provide a view of the disparity between companies within a given industry. The black line represents the relative proportion of companies in a given industry that have no gender pay gap but it’s the weight of the histogram on either side of the black line that carries the graphic’s message.

This is the histogram for arts, entertainment and recreation.

Bloomberg_genderpaygap_arts

The spread within this industry is very wide, especially on the left side of the black line. A large proportion of these companies pay women less on average than men, and how much less is highly variable. There is one extreme positive value: Chelsea FC Foundation that pays the average female about 40% more than the average male.

This is the histogram for the public sector.

Bloomberg_genderpaygap_public
It is a much tighter distribution, meaning that the pay gaps vary less from organization to organization (this statement ignores the possibility that there are outliers not visible on this graphic). Again, the vast majority of entities in this sector pay women less than men on average.

***

The second part of the visualization look at the quartile data. The employees of each company are divided into four equal-sized groups, based on their wages. Think of these groups as the Top 25% Earners, the Second 25%, etc. Within each group, the analyst looks at the proportion of women. If gender is independent of pay, then we should expect the proportions of women to be about the same for all four quartiles. (This analysis considers gender to be the only explainer for pay gaps. This is a problem I've called xyopia, that frames a complex multivariate issue as a bivariate problem involving one outcome and one explanatory variable. Chapter 3 of Numbers Rule Your World (link) discusses how statisticians approach this issue.)

Bloomberg_genderpaygap_public_pieOn the right is the chart for the public sector. This is a pie chart used as a container. Every pie has four equal-sized slices representing the four quartiles of pay.

The female proportion is encoded in both the size and color of the pie slices. The size encoding is more precise while the color encoding has only 4 levels so it provides a “binned” summary view of the same data.

For the public sector, the lighter-colored slice shows the top 25% earners, and its light color means the proportion of women in the top 25% earners group is between 30 and 50 percent. As we move clockwise around the pie, the slices represent the 2nd, 3rd and bottom 25% earners, and women form 50 to 70 percent of each of those three quartiles.

To read this chart properly, the reader must first do one calculation. Women represent about 60% of the top 25% earners in the public sector. Is that good or bad? This depends on the overall representation of women in the public sector. If the sector employs 75 percent women overall, then the 60 percent does not look good but if it employs 40 percent women, then the same value of 60% tells us that the female employees are disproportionately found in the top 25% earners.

That means the reader must compare each value in the pie chart against the overall proportion of women, which is learned from the average of the four quartiles.

***

In the chart below, I make this relative comparison explicit. The overall proportion of women in each industry is shown using an open dot. Then the graphic displays two bars, one for the Top 25% earners, and one for the Bottom 25% earners. The bars show the gap between those quartiles and the overall female proportion. For the top earners, the size of the red bars shows the degree of under-representation of women while for the bottom earners, the size of the gray bars shows the degree of over-representation of women.

Redo_junkcharts_bloombergukgendergap

The net sum of the bar lengths is a plausible measure of gender inequality.

The industries are sorted from the ones employing fewer women (at the top) to the ones employing the most women (at the bottom). An alternative is to sort by total bar lengths. In the original Bloomberg chart - the small multiples of pie charts, the industries are sorted by the proportion of women in the bottom 25% pay quartile, from smallest to largest.

In making this dataviz, I elected to ignore the middle 50%. This is not a problem since any quartile above the average must be compensated by a different quartile below the average.

***

The challenge of complex datasets is discovering simple ways to convey the underlying message. This usually requires quite a bit of upfront analytics, data transformation, and lots of sketching.

 

 

Tags:
junkcharts
http://junkcharts.typepad.com/junk_charts/

Comments are closed.